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Non-equilibrium ideal-gas dissociation after a curved 
shock wave 

By H. G. HORNUNG 
Department of Physics, Australian National University, Canberra 

(Received 2 December 1974 and in revised form 30 September 1975) 

Analytic solutions are obtained for non-equilibrium dissociating flow of an 
inviscid Lighthill-Freeman gas after a curved shock, by dividing the flow into 
a thin reacting layer near the shock and a frozen region further downstream. The 
method of matched asymptotic expansions is used, with the product of shock 
curvature and reaction length as the small parameter. In  particular, the solution 
gives expressions for the reacting-layer thickness, the frozen dissociation level, 
effective shock values of the frozen flow and the maximum density on a stream- 
line as functions of free-stream, gas and shock parameters. Numerical examples 
are presented and the results are compared with experiments. 

1. Introduction 
This paper is concerned with inviscid, adiabatic, hypersonic flow of a diatomic 

gas after a curved shock wave under conditions where the free-stream speed V: 
is sufficiently high for the gas to be heated to a post-shock temperature a t  which 
i t  will dissociate. A Lighthill-Freeman ideal gas is considered, for which the 
reaction rate is given by (see Freeman 1958) 

where t ' ,  p', T' and a are time, density, temperature and dissociation fraction, 
and C', 7, 8; and pi  are constants describing the rate and equilibrium properties 
of the gas. It is assumed that the dissociation rate near the shock is large, that is 

where Ilk; is a typical length scale, e.g. the radius of curvature of the shock. The 
recombination rate is assumed to be negligible throughout the flow. This condi- 
tion may be written as 

whenever the time available for recombination may be represented by (VL k;)-l. 
This is not permissible in the vicinity of a stagnation point. However, the distance 
from a stagnation point where the flow speed becomes so small that the recom- 
bination rate becomes significant can be shown to be of order 

A'exp ( - V:pi kJC'p f zT '~a2) ,  

Cp'2YTa2/piV: k; < 1 (1.3) 
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where A’ is the distance from the shock wave to the stagnation point. Since the 
argument of the exponential is a large negative number, only an exponentially 
small region has to be excluded from the flow field considered in order to justify 
the neglect of recombination throughout the remainder. 

A further simplification of the rate equation is afforded by the fact that, for 
situations where dissociation is important in gases such as nitrogen or oxygen, T’ 
is much smaller than 0;, so that the temperature dependence of the dissociation 
rate is very strongly dominated by the exponential function, and the factor 
C’p’T‘q(1 -a) may be considered constant (see also Freeman 1958). With the 
above approximations, the reaction-rate equation is written as 

where 8 is a small constant parameter. In the experimental nitrogen flow to be 
considered below, the left-hand side of (1.2) is 21 30, the left-hand side of (1.3) is 
N and e 1: 10-6. 

Using the dissociation model (1.4) it is possible to form a qualitative picture of 
the processes occurring along a streamline after it crosses a curved shock. As 
dissociation proceeds, the temperature falls. As a result the dissociation rate 
soon becomes so small as to be negligible compared with k;VA; that is, no 
significant further dissociation occurs over a length scale l fk; .  If the temperature 
is also lowered by an agency other than the dissociation, the-point where no 
significant further dissociation occurs is moved closer to the shock. In  the 
situation of interest here the additional temperature-lowering agency is the 
negative pressure gradient associated with the shock curvature. 

The flow may thus be divided into a region near the shock in which strong 
dissociation occurs, the thickness of which depends on e and the shock curvature, 
and a region further downstream in which no significant dissociation or recombi- 
nation occurs, that is a frozen region. Of particular interest is the variation of 
the thickness of the reacting layer, and of the frozen dissociation level, with 
shock shape and free-stream conditions. In  addition, the effective shock condi- 
tions for the frozen flow downstream of the reacting layer are to be found. 

The idea that the flow after a curved shock may be divided into a reacting 
region close to the shock and a frozen region further downstream is not new. It 
was suggested in the conclusions of Hornung (1972) that such a division might 
lead to a sufficiently simple problem to be capable of solution by matched 
asymptotic expansions, on the basis of the qualitative pattern exhibited by 
experimental results on blunt-body flows. Also, Stalker (1972, private communi- 
cation) recognized that the freezing of the flow occurs because of the strong 
exponential temperature dependence of the reaction rate and the effect of a 
pressure gradient on temperature. This led to an approximate analysis of the 
problem by Furler (1973). The present work has benefited greatly from ideas 
raised in discussions with Stalker and Furler. 
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Shock 
/ 

FIQ~JRE 1. Notation. 

2. Equations of motion on a streamline 
The main purpose of this section is to obtain an expression for the pressure 

gradient along a streamline behind a curved shock. In  obtaining this expression, 
which is needed for the next section, some features of reacting flow after a curved 
shock may be demonstrated conveniently. 

Take x’ and y’ as co-ordinates parallel and perpendicular to a shock of curva- 
ture k’(x’)  and making an angle $(x‘) with the direction of the uniform free 
stream, of velocity Vk, (see figure 1 ) .  k’ is taken to be positive if the shock is 
convex towards the upstream direction. Let u‘ and v’ be the components of 
velocity in the x’ and y‘ directions respectively, p’  and p’ be the pressure and 
density, and h’ be the specific enthalpy of the gas. Scale the variables according to 

p = p’/pk, x = x’k& y = y’k& k = k’/k& 
where the subscript CO refers to conditions in the free stream and kh is the shock 
curvature at a representative point. Introducing a non-equilibrium variable a 
(e.g. the dissociation fraction), the caloric equation of state is of the form 

) (2.1) 
h = v/(v:)z, p = p’/prn(V&)2, v = v‘/Vk,, u = U’/VL, 

= h(P, P, 4. (2.2) 
The conservation equations for momentum, energy and mass are (see Hayes & 
Probstein 1966, p. 267) 

(2.3) 

ELM 74 

uu,+( l -ky )vU, -kuv+p , /P  = 0, 
UV,+ (1 - ky)  VV,+ kU2+ (1 - ky)p , /p  = 0, 

h, p y  + it, p ,  + haay + vvy + uuy = 0, 

( P 4 ,  - kPV + (1 - kY) ( P V ) ,  = 0. 
I0 
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The subscripts denote partial differentiation. The energy equation has been 
differentiated with respect to y .  Differentiating it with respect to x yields an 
expression for px ,  which will be used in the continuity equation later: 

p x  = - {UU, + VV, + hppx + ha ax)/hP. (2.4) 

A thermal equation of state 
T = T @ , p , a )  

is also required, because the reaction rate is usually specified in terms of the 
temperature T’ = T(VL)2/R‘, where R‘ is the specific gas constant: 

da  da 
dt dt 
_ -  - -v, P, a). 

The derivative with respect to time ( t  = t‘Vi k;, with origin at the shock) is 
understood to be taken along a streamline (substantial derivative). 

The boundary conditions a t  the shock are (see Vincenti & Kruger 1965, 
p. 180) 

h,-hw = $m2(1-pF2),  ul = 1-m2 
P1-Pw = m2(1-p,l), 

(2-7) “: = m/pl,l a, = am, 

where m = sin and the subscript 1 denotes values just downstream of the shock. 
p1 can be obtained with a suitable model for (2.2) from (2.7). 

If the problem is posed in this fashion, that is, specifying boundary conditions 
only on the shock, only supersonic post-shock flows can strictly be determined. 
However, experience with inverse numerical techniques applied to blunt-body 
problems shows that, over a distance which is small compared with the radius 
of curvature of the shock, the shock boundary conditions are sufficient, for 
practical purposes, to specify the problem. 

By setting k and the x derivatives equal to zero in (2.3) a partial solution may 
be obtained for a straight shock: 

p -pw = m2( 1 -p-I), v = m / p ,  u2 = 1 - m2, (2.8a-c) 

(2.8d, e )  

With suitable models for (2.2), (2.5) and (2.6),  (2.8d, e )  may be integrated. This 
solution is, of course, precisely that for a normal shock (m = 1 )  with a super- 
imposed constant transverse velocity u. 

Returning to the curved shock, (2.3) may bs solved for the y derivatives of 
p ,  p ,  v and u explicitly, retaining ay as a parameter: 

uY = - kv-’E/( 1 - Icy) ,  (2.9b) 

vv,F = -haa,+k ( 1 - k y ) ,  ( 2 . 9 ~ )  
V 

p v F  = phaav-%( - uh (%+u) + u E + ( l - p h p )  ( “.-v)) / ( l -ky) ,  (2.9d) 
v2 v2 * k V Pk 
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where 

By combining x and y derivatives according to 

and using (2.4), the time derivatives of p ,  p and V become 

dV lap v- = --- 
dt p dt ' 

where V = (u2 + v2)t is the flow speed and 

(2.10) 

(2.1 1 a)  

(2.11 b) 

(2.1 1 c) 

(2.12) 

3. The differential equation for a(T)  along a streamline 

p and p from (2.1 I) and dividing by dafdt results in the following equation : 
Differentiating (2.5) with respect to t ,  substituting for the time derivatives of 

F E  = ($+Tp)phz+FTa+- kp2G V [ T, h, - Tp (hp -;)I f . (3.1) 

In this section (3.1) is simplified by introducing models for the rate and thermo- 
dynamics of the gas and making the assumptions discussed in the introduction. 
An ideal dissociating gas is considered (Lighthill 1957; Freeman 1958), for which 
(2.2), (2.5) and (2.6) become 

8 is the dissociation energy R'O; per unit mass normalized by VLz and is O( 1)  for 
situations where dissociation produces significant effects. The relevant derivatives 
of T and h may now be substituted into (3.1), which becomes 

(1 - pv2/p) 8 + T + ~ k v G  eelT 
- dT 

z -  (3.3) 

Near the shock, where T is relatively large, the term in E is small, and the straight- 
shock solution (2.8) is recovered. Further downstream, where the temperature 
has fallen to a sufficiently low value, the exponential term becomes large, and the 
term in E eventually becomes O( 1). Let this region be called the transition region. 
It is necessary to estimate the order of magnitude of the various terms of (3.3) 

10-2 
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in the transition region. This may be done by evaluating the straight-shock 
solution (which applies for y k  < I) in the transition region, defined by 

skvGes/' = O(1). (3 .4 )  

Since the flow is hypersonic, p m  may be neglected in (2 .8 ) ,  so that near the shock 

p/pv2 = p - I. 
Together with (3 .2 )  this yields 

(3 .5 )  

It is clear from (3 .4 )  that T will be o(1) in the transition region. Equations (3 .6 )  
and (3 .5 )  show that pv2/p and p-l are of the same order as T .  Hence v = m / p  is 
also of the same order as T in the transition region. Let T = O[S(E)] in the 
transition region. Equation (3.4) then requires that 

ESee/T = O(l ) ,  or 6 / T  = O(log (sS)-l) (3 .7 )  

in the transition region, so that 6 = O( l/log e-l), provided that G! remains O( 1). 
It is now necessary to examine the variation of G along a streamline in some 

detail. To do this, consider first the value of G for a straight shock, GI,=,. While 
the x derivatives in (2 .12)  are zero in that case, they are all divided by k, and 
terms such as p J k  are finite and constant. For a hypersonic straight shock 
GI,=, may be expressed in terms of p and m [see ( 2 . 8 ) ] :  

GI k=O = [3( 1 - m2) - m2/p] ( 1 - p-l). 

G = GI,=, + y[aGf/ay], + . . . 

(3 .8 )  

However, G deviates from this value when k is not zero. To account for this 
deviation, write 

(3 .9 )  

for small y, where Gf is the frozen value of G (a, = 0) for a curved shock. 
Differentiating (2 .12)  with respect to y ,  substituting from (2 .9 )  and its x deri- 
vatives into the resulting equation and retaining only the largest power of p1 
gives 

1 (3) =!?L![?+-(1-m2)4+-(1-m2)2 5 3 . 
ay 4 2 m2 m 

(3 .10)  

An estimate of the order of magnitude of the distance yT of the transition region 
from the shock may be obtained by writing 

near the shock, dafdT being taken as constant and equal to its approximate 
shock value for the purposes of this estimate [see ( 3 . 3 ) ] .  Substituting z = 8 / T  and 
integrating, 

For gases like nitrogen, oxygen and carbon monoxide the temperatures a t  which 
dissociation is important are such that 6/Tl > 8; also log(sS)-l 1. The integral 
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may therefore be approximated by its asymptotic form for large z (the leading 
term of which is just the integrand), so that, neglecting terms O ( E )  and O(S3),  
yT 2: 4eS2vl/82sS = 4Sm/82p1. With this result, (3 .9 )  and (3 .10)  give the order of 
magnitude of the change yr(aGf/ay), in G from the shock to the transition region 
owing to the shock curvature as O(p,y,) 

G = GI+, + O(8).  

O(S), so that 

In  the transition region p = O(S-l), however, and (3 .8 )  gives 

G = 3( 1 - m2) + O(S). (3.11) 

Since the term in Gin (3 .3 )  only begins to contribute significantly in the transition 
region, (3 .11)  is an adequate representation of G in (3 .3 ) )  which may now be 
rewritten in terms of a and T as 

dT 8 - T{( 1 + a )  8/m2 - 1 + O(6))  + 3skm-l( 1 - m2) ( 1 + a)  TesiT [ 1 + O(S)] 
3( 1 +a)  T 
( 4  + a )  m2 

[ I +  O(S)l) (4 + a )  { 1 - 
da=- 

(3.12) 

In  the transition region, T is itself O(S), so that the contribution of the terms 
labelled O(S) in (3 .12)  is only O(S2). Only a first-order transition soluticn will be 
sought below, and these terms become unimportant. Neglecting them and 

(3.13) 
writing 

b = 3(  1 - m2) km-l 

(3 .14)  
yields d T  8 -  T{(l +a) 8/m2- 1}+ be( 1 +a) TeeiT _ -  

( 4 + a )  1--- { 3(1+a) 4+a m2 
da- 

The methcd of solution used in the next section could be applied to (3 .14)  with 
success, but since all the features of the solution can be demonstrated with less 
complexity and good accuracy if a is neglected compared with 1 in the two terms 
in curly brackets in (3.14),  the equation 

_ -  da - (4+a) 11 - A t )  
d< - l - p ~ + e b [ ( l + a ) e l / ~  

is taken as the model equation for the flow, where = T/8 and 

(3.15) 

p = (8 -m2) /m2,  A. = &9/m2. (3 .16)  

As the temperature falls with proceeding dissociation, the E term, which is due to 
the negative pressure gradient accompanying the curved shock, becomes im- 
portant and finally dominates, when T = o(8/log (be)-l). da/dt then approaches 
zero and 

dT d T d a  
l+abT. 

at d a  at 4 + a  
--f -- -=-- 

Since a is constant and equal to a, under such conditions, this may be integrated 
to give tho asymptotic frozen-flow result 

1 +a, T = T,exp (- - bt) . 
4+a0 

(3 .17)  
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It should be pointed out at this juncture that the change in the character of dT/da 
occurs in a different way when da/dt does not change so rapidly with tempera- 
ture. This may be illustrated conveniently with a gas model such as that of 
Becker & Bohme (1969) : 

p / p  = T ,  h = C,T +ca, da/dt = ( T - ~ ) / T ,  

with the constants C,, c and 7 as in (3.1). The result is 

As the relaxation proceeds, a increases and T falls, but T - a  then changes 
sign, so that a finally approaches the still falling T (i.e. approaches equilibrium) 
from above, and the c term becomes unimportant. Note that this difference 
between this equation and (3.3) arises from the more gently varying rate &s 

compared with (3.2). 

4. Solution for a(t) along a streamline 
In  this section a solution of (3.15) is obtained with the boundary condition 

a = 0 a t  < = t1 = 6m2/498, (4.1) 

in < t1 and with c < 1. Note that rn is a constant for each streamline, being the 
value of sin4 at the point where that particular streamline crossed the shock. 
Consider first, the region close to the shock. Expand a in the form 

a((,€) = ag(t)+€ag)(t)+ ..., (4.2) 

where the subscript R signifies relevance to the reacting layer. The second term 
in this expansion has to be considered because it is the source of terms which 
become significant in the t.ransition region, while the terms O(6) neglectedin the 
derivation of (3.15) decrease to even smaller significance in the transition region. 
Substituting (4.2) into (3.15), collecting terms of equal order and solving for 
a9 and a(&) with ag)(<,) = 0 gives 

where A(<)  = exp (hp-l<) (1 -,u<)-fl-*(l-A'fl) 

2: 1 - ~ ~ + Q A P + w ~ ) ,  (4.4) 

and the values of h and ,u in (3.14) are used to simplify I +p - h to $A. The 
constant A ,  = A(&). When 

.g 1: l/{log [(bs)-llog (b4-1]},  (4.5) 

the E term in (3.15) becomes O(1). Introduce a new independent variable 

16-2 
= [ - log (bsq-1 

for the region in which = O( I), 6 being defined by 

6 = l/log @.)-I. (4.7) 
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Writing (3.15) in terms o f t  for the transition region yields 

the terms in h and ,u having disappeared into the higher-order terms. To solve 
(4.8), write 

and substitute into (4.8). A simple equation for a9 results: 

a&, 6)  = c, + c, 6 + c2 621og 6 + a$)(l)  62 + o(62) (4.9) 

(4.10) 

giving 

aT(g, 6)  = C, + C16+ Cz6210g 6 + {C, - (4 + C,) [E+ log (1  + (1 + C,) e-c)]}62. (4.11) 

The C’s are constants which have to be determined by matching a,(,c~) and 
aT(& 8) term by term in an intermediate region. Choose g = O( 1) as the matching 
region, where 

g =  6-yE-6). (4.12) 

Expressing a, as a function of [ and 6 in the matching region gives 

an([,&) = 4{A,[1 -6-a2(9h+&) 
+63((1 - $ A ) [ + Q ( ( , U - A )  (3-2p)-  1) + 4 ~ ~ ( ~ ~ - 3 ) e - ~ ) ] -  1)+0(63). 

(4.13) 

This has to be matched with aT([,6), which may be obtained from (4.6), (4.11) 
and (4.12) as 

a,(l,6) = c,+~c,+S2log6(C,+4+C,)+S~[C,- (4+C,)5] 

- ( 4 + ~ , ) ( 1 + ~ , ) 6 ~ e - ~ + 0 ( 6 ~ ) .  (4.14) 

Equating (4.13) and (4.14) yields 

co == 4(~41-1), c1 = -4A1, c2 = - (4+c0)  = -4~41, c, = -$Alh. (4.15) 

Note that the terms O(6) in (3.12) would only appear in the terms o(P) in (4.13) 
and (4.14). The transition solution for a becomes 

a,([, 6) = 4(A1- 1) 

+ 4A1{ - 6- 6zIog6- 62[+h - 1 +<+log ( I  + [4~, - 31 e-z)]} + o(P), 

(4.16) 

which asymptotes for -+ - co to the frozen dissociation fraction 

a, = 4A,{ I - A ,  - 6 - a2 IOg 6 - P[Qh - 1 + log (4A1 - 3)]} + O( d2), (4.17) 

expressed explicitly in terms of shock shape, free-stream conditions and gas 
proper ties. 
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5. Reacting-layer thickness and effective shock values 

the shock may be obtained by integrating 
The time t for which a particle has travelled along a streamline since crossing 

after substituting for auld[ from (3.15). By finding the forms of t,he resulting 
equation in the reacting layer and in the transition region as before, integrating 
and matching in the intermediate region5 = O( 1) ,  the following result is obtained 
foI t in the transition region: 

This confirms the estimate of the order of magnitude of the layer thickness 
obtained in $ 3. 

In  the region downstream of the reacting layer, the composition on each 
streamline is frozen a t  a different value of a,, given by (4.17). For the purposes of 
the frozen region, the thin reacting layer could be regarded as part of the disconti- 
nuity a t  the shock. The effective boundary conditions a t  this discontinuity may be 
obtained by extrapolating the frozen behaviour back to t = 0. For t + CO, that is, 
for large negative i ,  (5.2) gives 

4A 
lim t = ~ S [ - ~ + l o g ( 4 A l - 3 ) ] .  

E+--CO 4A1-3 
(5.3) 

Writing the asymptotic frozen-flow result (3.17) in terms of 5 and using (4.17) to 
replace a, gives 

[-logS+log~o-SlogS] 1-- -ag * (5.4) 
t =  b(4A1- 3) [ 4A9!33] ) 

Comparing (5.3) and (5.4), it  can be seen that they give the same result if 

5 0  = S{l +Slog 6+610g (4A,- 3)) +o(P). (5 .5)  

Note that this effective shock temperature is almost independent of the actual 
shock temperature t1 and essentially depends only on S. 

By writing 
dp ap at da 
dg at d a d t '  
-=---  

(2.11) may be used together with the arguments leading to (3.15) to obtain the  
following equation for the pressure : 

(5.6) 
1 dp 1 + a - 35 -pO-bb 8-' (4 + a) 
0 l-,u<+ebf;(l+a)eE-' ' 

The same process as was applied to (3.15) in $ 4  and to (5.1) may be applied to 
(5.6) to obtain the transition-layer solution for the pressure: 

-- = -  
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where 

Comparison with the frozen-flow solution for p ,  

p = 

shows the effective shock value cfp to be 

2)o = pi + (4A1- 3) 8[B1- 81. 

The density in the transition region may now be obtained from (3.2) as 

P = PIeHl +a), 

Po = PO/[RO(l+ a0)I. 

which serves also to determine the effective shock value of the density, 

In  the frozen limit. 
3bt 

P = PoexP ( - 4fa,). 

153 

(5.8) 

(5.91 

(5.10) 

(5.11) 

(5.12) 

Equation (5.12), like (3.17) and (5.9), corresponds to a flow with a constant ratio 
of specific heats, equal to  +(4 + ao), a pressure gradient of - bp and initial condi- 
tions p = po, T = To and p = po. 

6. Numerical example 
In  this section the nature of the solutions obtained in the previous section is 

iJlustrated in the form of numerical examples. It is convenient to test the assump- 
tion that A and p are independent of a at the same time, by obtaining a numerical 
solution not of the model equation (3.15), but of (3.14). Similarly the more 
general forms of (5.1) and (5.6) are integrated. The results are shown as full 
lines in figure 2 in the form of a, 6, p and p plotted against t for the case 8 = 0.8, 
m = 0.8, 8 = 10V and b = 1.08. Also shown in the figure are the analytical 
results. To plot these, a and p are obtained from the transition and frozen 
solutions [equations (4.16), (5.7) and (5.10)] in terms of g. g is then related to t by 
the transition and frozen solution for t [equations (5.2), (3.15) and (5.5)]. The 
density is determined from (5.11). These results are plotted as dotted lines. The 
frozen solution is continued back to the shock in order to show the quality of the 
approximation for the effective shock values. I n  addition, the straight-shock 
solution (b  = 0) is superimposed as chain-dotted curves. It may be seen that the 
actual solution starts in the reacting layer in agreement with the straight-shock 
solution, departs from it in the transition region and eventually approaches the 
frozen solution asymptotically. The transition solution is seen to agree with the 
numerical solution fairly well, discrepancies of up to 3 yo in p and 6 and a dis- 
crepancy of about 6 yo in a. being evident. The former are mainly due to the 
relatively inaccurate result for t T ( c )  given by (5.2), in which only the leading term 
in an exprmsion for small e can be retained. The latter is mainly due to neglecting 
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FIGURE 2. Numerical example of flow along a streamline with 8 = 0.8, m = 0.8, E = lo-+, 
b = 1.08. -, numerical calculation (a dependence of terms represented by h and ,u not 
neglected); - - - -, frozen solution [equations (3.17), (5.9), (5.12)]; .--, analytic solution 
for transition region [equations (4.16), (5 .2 ) ,  (5.7)]; , straight-shock solution (b  = 0). 
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FIGURE 3. Dependence of a on E and t .  -, numerical calculation; - - -, transition 
solution [equation (4.16)]. 6' = 0.6, m = 0.8, b = 1.08. 

the variation with a of the terms represented by h and p .  The effect of the 
reaction on the pressure is shown by the rise in pressure immediately after the 
shock. As expected, this is quite a small effect. (See also Freeman 1958.) It needs 
to be included in the analytic solution, however, since its neglect would lead to 
a doubling of the discrepancy between the density as given by the transition 
solution and as numerically calculated. The pressure maximum, which coincides 
with a point of inflexion of the streamline, occurs much earlier than the density 
maximum on the streamline. At smaller values of 8 and for smaller E the effect of 
the dissociation is larger. Smaller e causes the time to freezing to decrease, but 
because of its logarithmic dependence on E ,  a consequence of the form of the 
temperature dependence of the rate, halving E reduces the time to freezing by 
only about I0 yo at E N lop6. 

Because the rate at  which a increases in the straight-shock solution becomes 
very small at large t ,  the difference between aT and the straight-shock value is 
not very significant for t around 0.6. To show that, at large t ,  aT does depart from 
the straight-shock solution, at different points for different values of E ,  figure 3 
shows a plotted against log (t/e). Plotted in this form, the straight-shock solution 
for a particular set of 8, b and m but for all e coincides with that for E = 0. The 
figure shows the numerical results for a(+) as well as aT(tT/e) with E as a para- 
meter for 8 = 0.6, rn = 0.8 and b = 1.08. The straight-shock solution and a, are 
seen to merge a t  about t = 0-1s; as t decreases below about t = O-OIe, in the 
strongly reacting region, where aT is no longer valid, they depart from each other 
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again. The discrepancy between the numerical and analytical value of a, arises 
from considering the terms represented by h and ,u to be independent of a, and 
from higher-order terms in 6, neglected in (4.17). 

7. Position and value of the density maximum: comparison with 
experiment 

The position of the density maximum on a streamline is of interest because 
density may be measured relatively easily (e.g. by optical interferometry) and 
because it is quite sensitive to non-equilibrium effects. The maximum may be 
found by equating the derivative of (5.11) with respect to ( to zero: 

Expressing the derivatives in terms of a and 6 and solving for [ gives 

E* = [log (%og-)] 1 -1 +0(8210g6). 
3eb 3eb 

The corresponding value of E is 
E, = log 3 + o(810g6). 

On substituting E = g* in (5.3), the time taken by a particle to traverse the 
distance from the shock to the density maximum is obtained: 

The value p* of the density at its peak is then found by putting !E = log 3 in the 
transition solutions for p and a and substituting these into (5.11): 

p* = 8 I [  8(4A1 - 3) + B l ] ( l - 8 , 0 g 8 + 8 [ ~ 3 ( l - J o g ~ ) - l o g 3  

4AI - 3 - 
p1/8 + (4A1- 3) 4 

where terms o( 1) have been neglected. 
i n  order to convert t ,  into the distance to the density maximum, it is necessary 

to know the behaviour of the flow speed along the streamline. The variation in u 
from the shock to the transition region may be estimated, from (2.9) and 
yT = O(S), as O(6k).  The distance parallel to the shock traversed by aparticlefrom 
the shock to the density maximum is therefore 

4A 6 log $A 
X * - X 1  = [ZL1+0(&)]t* = ( I  -m2)4+0(62). 

b(4A1- 3) (7.5) 

The corresponding distance normal to the shock can be expressed as the product of 
t ,  and a suitable average value of the shock normal speedv, namely 2mt,/(p1 + p * ) :  

(7.6) 
8mA,810g$Al 

b(p1 +P* )  (4A1- 3) ' 
Y* = 
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To compare the results with experiment, an intederogram of nitrogen flow 
over a circular cylinder from Hornung (1972) is used. In  this flow, the free-stream 
conditions are Vk, = 5.5km/s, p; = 5.5 x 10Wg/cm3, a, = 0.07, 6’ = 0.92 and 
TL = 1400 O K .  The dissociation rates measured by Kewley & Hornung (1974) 
give B = 2 x for flow over a 2 in. diameter cylinder, k; being the shock curva- 
ture at the symmetry plane. The shock shape for such flows is well represented 
by the catenary Ic = m, so that b = 3(1 -m2). The experimental free stream is 
sIightly dissociated, while the theory is derived for a, = 0. This may be accounted 
for in the theoretical results by evaluating A,([,) at the experimental value of [,, 
which may be obtained by substituting the experimental value of p1 = 5.5 (see 
Hornung 1972, figure 13) in 5, = m2(l -pc l ) / [p lO( l  +am)]. 

The interferogram is shown in figure 4 (plate 1). Superimposed on it are two 
curves. The full line is the locus of density maxima as determined from (7.5) and 
(7.6). The dashed line is the locus of points where streamlines (as calculated by a 
full numerical solution) are tangential to the experimental fringes. Since the 
streamline shapes are relatively insensitive to non-equilibrium effects, and since 
the refractive index of N,-N mixtures is only weakly affected by a, such points 
may be regarded as measurements of the positions of density maxima. It can be 
seen that the agreement between the measured and calculated locus of density 
maxima is quite good a t  the smaller values of Q but deteriorates rapidly as Q 
increases towards the symmetry plane. This occurs for two reasons. First, while 
(7.3) correctly predicts t ,  to become very large as m + 1, the approximation 
concerning v made to obtain y* in (7.6) becomes very inaccurate as m-t 1. 
Second, throughout the analysis it has been assumed that 1 -m2 = O(l),  and 
terms O(6)  have been neglected by comparison. This assumption breaks down 
near the stagnation point and the theory becomes invalid there. Note that the 
recombination rate remains unimportant in this region, since (1.3) applies for the 
experimental flow. The discrepancy between the calculated and measured locus 
of density maxima a t  larger distances from the symmetry plane is partly due to 
the transverse curvature of the shock, which distorts the interferogram, parti- 
cularly in the vicinity of the shock. 

The transition from reacting to frozen flow may now be seen quite clearly: to 
the left of the locus of density maxima the fringe pattern is typical of reacting 
flow (fringes parallel to shock); to the right, or downstream, of i t  the pattern 
characterizes frozen flow (fringes approximately normal to body). The fact that 
the frozen region is different from a flow which is frozen throughout the field, in 
that a gradient of a exists across it, changes the fringe pattern in the frozen 
region in such a way that the fringes are slightly convex in the downstream 
direction, where in the fully frozen flow they would be concave. This is mainly 
a consequence of the dependence of po on m. 

To compare the calculated and measured values of the density maxima, 
p* -pl  is plotted against Q in figure 5 for the case of the experiment considered. 
The points are values calculated from the measured fringe shift and 

4.16Fh’ 
L’( 1 + 0 . 2 8 ~ ~ )  

g ! I  
P - P m  = 
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FIUURE 5. Value of the density increase at the maxima. 0, measured, p1 = 5.5; 
---, calculated from equation (7.4), p1 = 7. 

where (in this formula only) 3’ is the fringe shift, A’ is the wavelength of the light 
used (533nm) and L‘ is the geometric length of the optical path. The agreement 
is well within the experimental error. 

One might now be tempted to use this understanding of blunt-body flow to 
determine the dependence of the dissociation rate on temperature from the 
variation of y* with m. However, it  is easy to see from (7.5), (7.6) and (7.8) that 
this is not satisfactory, because of the weak dependence of y* on e and the fact 
that the variation of y+ with m is a balance between the effect of the pressure 
gradient and temperature dependence of the rate. 

8. Conclusions 
Hypersonic flow after a curved shock with Lighthill-Freeman ideal-gas 

dissociation has been considered under circumstances such that the dissociation 
rate is fast and the recombination rate may be neglected. 

It is shown that under these conditions the flow may be divided into two 
regions: a thin reacting layer near the shock, in which the effect of shock cmva- 
ture is small, and a frozen-flow region further downstream. Analytic solutions 
are obtained for a streamline in the form of matched asymptotic expansions with 
the dissociation rate as a large parameter. If the thin reacting layer is considered 
to be part of the shock, effective shock conditions may be defined on each 
streamline for the frozen flow by extrapolating the frozen-flow solution back to 
the shock. The theory gives explicit expressions for these effective shock values. 
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The effective shock temperature for the frozen flow turns out to be practically 
independent of the shock slope and curvature. Hence the effective shock density 
varies with shock slope approximately like the effective shock pressure, namely 
like m2 = sin2$. This is in contrast to the situation for the shock values for a 
frozen flow, in which the density is independent of q5 and the temperature varies 
as sin2 $. 

An important result, which is also of interest in comparisons with experiment, 
is the distance from the shock of the density maximum on a streamline. This 
turns out to be proportional to 

sin2 #/k log (bs)-l. 

The fact that the logarithm appears in the denominator of the layer thickness is 
related to the exponential temperature dependence of the dissociation rate. 

The results are shown to agree quite well with an experimental interferogram 
of nitrogen flow over a circular cylinder except in the vicinity of the symmetry 
plane, where the theory becomes invalid. 
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FIGURE 4. Comparison with experiment. Nitrogen flow over a 2 in. diameter circnlar 
cylinder. J'L = 5.5 km/s, pm = 5.5 g/cm3, a, = 0.07, 0 = 0.93, 2'; = 1400 "B, 6 = 2 x 10-5. 
_- , locus of density maxima [equations (7.5), (7.6)]; - - -, locus of density maxima from 
pmnts of tangency of numerically calculated streamlines and measured interference 
fringes. 
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